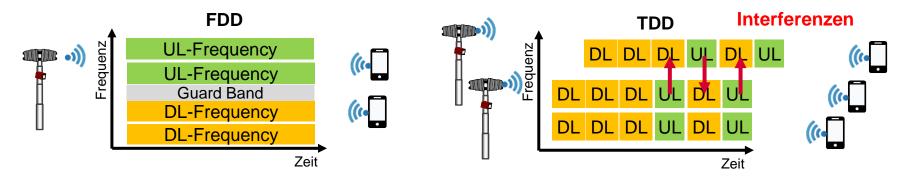

5G Synchronität
Anforderungen und Messungen
GNSS Empfänger als mobile
Referenzquelle

Roland Stooss VIAVI Willtron Juni 2021

Agenda


5G Synchronität

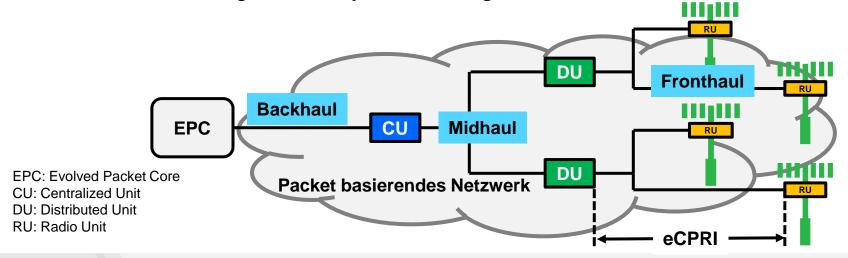
- Warum und wo wird welche Synchronität benötigt?
- SyncE und PTP Grundfunktionen
- Messtechnische Lösungen (Feld) für SyncE und PTP
- Funktionsweise, Bedienung und Einsatz eines GNSS Empfängers als portable Referenzquelle
- Q&A

Synchronisationsanforderungen in Mobilfunknetzen

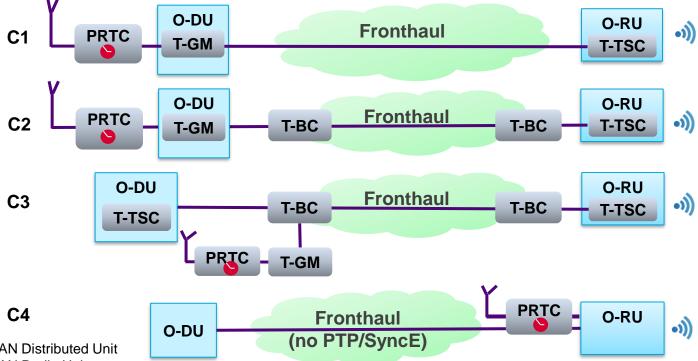
Radio Technology	Frequency Synchronization		Phase/Time	
	Macro Cells	Synchroniza ells Small Cells		
FDD (GSM, UMTS, LTE)	50 ppb	100-250 ppb	Not Needed	
TDD (UMTS, LTE, 5G)	50 ppb	100-250 ppb	< ± 1.5 μs (< ± 1.1 μs)	

CoMP: Coordinated Multipoint

elCIC: Enhanced inter-cell interference FDD: Frequency Division Duplexing TDD: Time Division Duplexing


EU-Bestimmung ECC Report 296

Alle RUs müssen deshalb die gleiche Rahmenstruktur haben und die Rahmen müssen zeitsynchron starten.

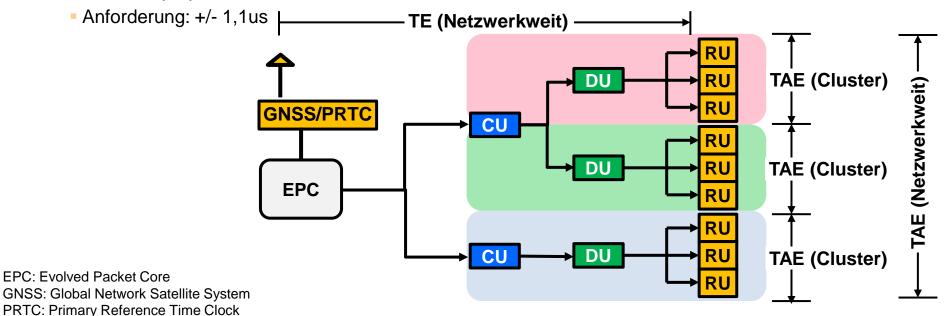

5G xhaul Struktur

- Mit 5G hat sich der Mobile Backhaul durch neue Systemkomponenten weiter aufgeteilt
- Die BBU wurde zu CU und DU. Die RRU wurde zur RU
- Neben Fronthaul und Backhaul gibt es jetzt noch den Midhaul
- Die Kommunikation zwischen DU und RU wir über eCPRI realisiert
- Manche Funktionen sind sehr laufzeitsensibel und begrenzen die Entfernung, (<100us, ca. 20km)
 - -> Diese Funktionen können in der DU positioniert werden
 - -> Weniger laufzeitempfindliche Funktionen lassen sich in der CU positionieren
- Die sehr hohe Anforderung an die Zeitsynchronisierung besteht zwischen DU und RU

ORAN – Architekturvarianten zur Synchronisation im Fronthaul

O-DU: ORAN Distributed Unit O-RU: ORAN Radio Unit

ORAN: Open Radio Access Network T-BC: Telecom Boundary Clock T-TSC: Telecom Time Slave Clock


PRTC: Primary Reference Time Clock

Notiz: Ein qualifizierter GNSS Empfängerstandort benötigt guten Satellitenzugang, um die Antennenposition ausreichend genau bestimmen zu können. Das ist im Stadtbereich durchaus schwierig.

RU Clusters, deren Synchronisation und die Bedeutung von TAE und TE

- Alle RUs, die an eine DU angebunden sind, werden als RU Cluster bezeichnet
- Time Alignment Error (TAE) ist der relative Zeitversatz zwischen RUs
 - Pro Cluster spezifiziert, kann aber auch über das gesamte Netz gefordert sein
 - Anforderungen je nach RF-Verfahren von +/-1,5us bis +/-32,5ns (MIMO)
- Time Error (TE) ist der Zeitversatzt eines RU zur absoluten Grandmaster Referenzzeit

VIAVI

5G and 4G/LTE Advanced Delay and Time Error Sensitivity

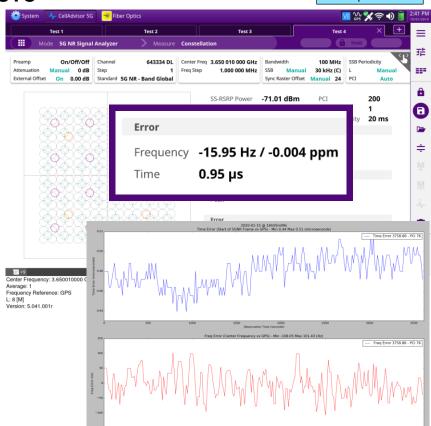
Next Generation Fronthaul Interface (NGFI) Transport Classes				
Class	Subclass	Max One-Way Latency	Applications	
Synchronization		1ms		
RAN Control & Mangement	Real-time RAN Control	1ms		
	Near-Real-Time RAN Control	10ms		
	Non-real-time control/manage ment	100ms		
Data Plane	Subclass 0	50μs	URLLC and cMTC	
	Subclass 1	100μs	Functional split options 6, 7, 8, where the RAN nodes are performing time critical signal processing	
	Subclass 2	1ms	Functional split options 2, 3, 4, 5	
	Subclass 3	3ms	Functional split options 2, 3	
	Subclass 4	10ms	Functional split option 1	
Transport Network Control & Management		1ms		

Next Generation Fronthaul Interface (NGFI) Time Error Requirements			
Category	Time Error _{radio}	TAE	Application
A+	+/- 32.5ns	65ns	MIMO or TX diversity transmissions, at each carrier frequency.
А	+/- 65ns	130ns	E-UTRA intra-band contiguous carrier aggregation
OTDOA	+/- 100ns	N/A	Location Based Services using OTDOA
В	+/- 130ns	260ns	NR intra & inter-band contiguous carrier aggregation; E-UTRA intra-band non-contiguous carrier aggregation
С	+/- 1.5μs	3µs	NR intra & inter-band non-contiguous carrier aggregation; TDD use cases
D	+/- 5us	10us	LTE-TDD for > 3km cell radius

Boundary Clock Requirements per G.8273.2				
Parameter	Class A	Class B	Class C	
max TE	100 ns	70 ns	30 ns	
сТЕ	±50 ns	±20 ns	±10 ns	
dTEL (MTIE)	40 ns	40 ns	10 ns	

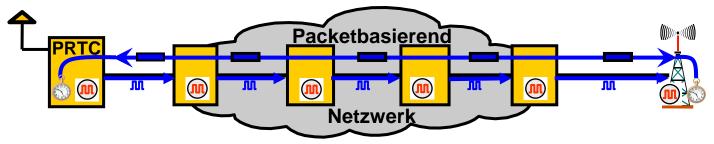
cMTC: massive Machine Type Communications uRLLC: ultra Reliable Low Latency Communication

Frequenz und Zeitsynchronität an der Luftschnittstelle

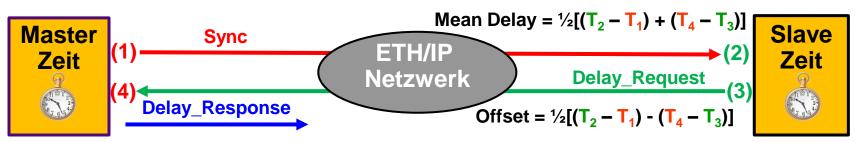

Überprüfung von Frequenz und Zeitfehler versus UTC

Referenz: ARCEP 2019-062 2019/235/UE ECC Report 296

- Grund: Jeder Betreiber muss prüfen, ob seine RUs den Synchronitätsanforderungen von +/- 1,5us vs UTC entsprechen
- Testbedingungen:
 - 5G Cell under Test: SSBs präsent
 - Andere Netzbetreiber: Beliebig
 - CA5G: OTA LOS < 50m
- Prinzip:
 - CA5G Trigger: « GNSS »
 - Modus « 5G NR Signal Analyzer », « Carrier Scanner »
 - Direct reading
- Erwartet Ergebnisse per Netzbetreiber:
 - Frequenzfehler < +/- .05 ppm versus GNSS
 - Time Error < +/-1.5µs versus GNSS


OTA: Over the Air

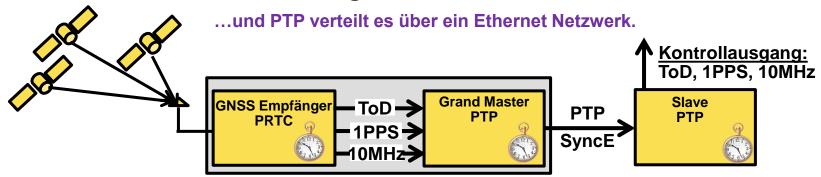
SSB: Synchronisation Signal Block



Weitergabe von Frequenz und Zeit über ein Netzwerk.

Es gibt zwei Synchronisierungsmethoden

- Layer 1 physikalisch Diese Methode ist nur für Frequenz
 - Im heutigen, typischen Mobile xhaul ist dies SyncE
- Timing over Packet Diese Methode ist für Frequenz und Zeit
 - Die heutige, typische Technologie ist Precision Timing Protocol (PTP/1588v2)



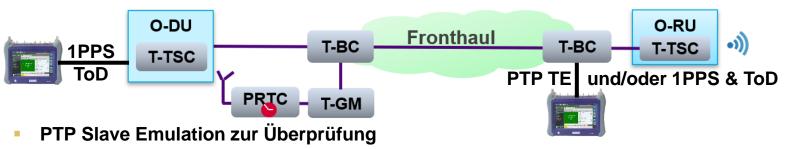
Der Slave ändert seine Systemzeit so lange, bis sein Systemzeit-Offset zur Master-Zeit null ist.

PRTC: Primary Reference Time Clock

GNSS liefert die Referenzsignale ToD, 1PPS, 10MHz...

- GNSS Satelliten senden kontinuierlich ein Signal mit einer ID, Zeitinformationen und Positionskoordinaten von sich und den anderen Satelliten (Almanac)
- Der GNSS Empfänger benötigt mehrere Satellitensignale, um seine Antennenposition und damit die Laufzeit der Satellitensignale und die notwendige Zeitkorrektur zu ermitteln
- Somit kann der GNSS Empfänger seine Systemzeit auf die GNSS Zeit synchronisieren und die Referenzsignale ToD, 1PPS und 10MHz einem PTP Master bereitstellen
 - ToD liefert den Zeitstempel (UTC)
 - 1PPS liefert den "Trigger", wann dieser ToD Zeitwert gültig ist. Das bestimmt die Zeitgenauigkeit
 - Die 10MHz Frequenz sorgt dafür, dass die Systemuhr mit dem richtigen Takt arbeitet. Damit wird der Oszillator des Masters auf die GNSS Frequenz getunt. Das bestimmt die Zeitstabilität
- Ein PTP Master gibt nun diese Informationen per PTP und SyncE an einen Slave weiter
- Hat ein Slave einen Kontrollausgang kann seine Genauigkeit ohne Störung analysiert werden

Warum gleichzeitig PTP und SyncE?


PTP kann doch Frequenz und Zeit.

- Obwohl PTP neben der Zeit auch die Frequenz weitergeben kann ist es durchaus üblich beide Methoden SyncE und PTP einzusetzen
- SyncE liefert eine sehr genaue und stabile Frequenz. Damit kann bei einem Ausfall von PTP der Oszillator des PTP-Gerätes auf der genauen SyncE Frequenz gehalten werden. Und somit bleibt auch die PTP Systemzeit während einer Holdover Phase genau
- Kann ein PTP Slave wegen Netzwerkproblemen nicht alle PTP Sync Nachrichten verwenden fehlt ihm die notwendige Zeitstimulierung. Taktet er die Systemzeit mit einem schlechten Oszillator kann sich in wenigen Sekunden ein sehr großer Offset (TE) ergeben

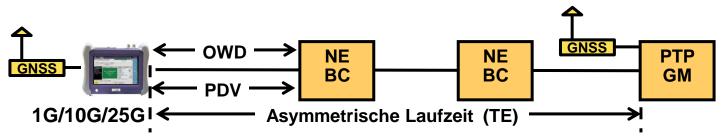
Oscillator	Accuracy (ppm)	Max loss in one second	Max loss in one day	Cost
Typical Crystal	100 ppm	100 us	8.64 second	\$1.50
Oven controlled crystal	0,001 ppm	1 ns	1.73 second	~\$50
Rubidium crystal	0,000001ppm	1 ps	86 ns	~\$300
Cesium crystal	0,0000001ppm	0,1 ps	8.6 ns	~\$40,000

PTP Messlösungen – Inbetriebnahme & Fehlersuche

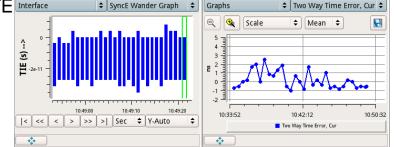
- der Konnektivität, Funktion und Performanz eines PTP Services
- der Performanz des Netzwerkes zwischen Slave und Master Lokation
- Messparameter: TE, MaxTE, T1 cTE, T4 cTE Two Way TE/cTE, M-t-S/S-t-M OWD and PDV/IPDV FPC/FPR/FPP; Packet Select 2-Way TE; dTE mit TIE Wander Analyse
- Capture von PTP "Timing" Daten, zur weiteren Analyse mit externer Analyse SW
- Simultane SyncE Wander Analyse
- Daten-Capture zur Analyse mit Wireshark auf dem MTS-5800

1PPS Wander Analyse und ToD Vergleich

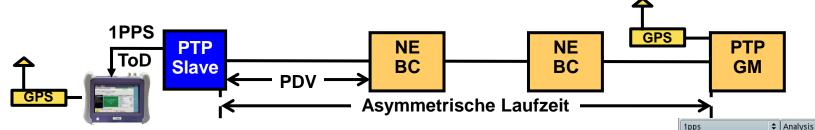
- Um Störungsfrei die Genauigkeit und Stabilität von PTP Geräten (BC, GM, SC) zu prüfen
- Mit die wichtigste Messung, um PTP Netze zu tunen und Fehlerbereiche zu lokalisieren


Lastgenerierung

- um Verbindung zu stressen und Datenperformanz zu testen
- um Einfluss der Datenlast auf die PTP Performanz zu prüfen

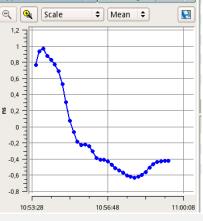

Notiz: TE Analyse benötigt eine ausreichend genau GNSS Zeitreferenz am Messgerät.

PTP Slave Emulation, um Netzperformanz zu testen.


- Messfunktionen und Ergebnis im Slave Emulationsbetrieb
 - M-to-S und S-to-M OWD, PDV/FPP, Packet Select 2-way TE
 - TE, MaxTE, 2-way TE/cTE
 - dTE = TIE mit Wander Analyse und MTIE/TDEV gemäß G.8271/8272/8273
 - Aufzeichnen von PTP Timing Daten zur externen Analyse
 - Aufzeichnen von PTP Paketen für offline Protokollanalyse
 - SyncE Takt & Wander Analyse
- PDV Ergebnis nur für die Strecke von verwendetem BC Master bis zum Messgerät
- Asymmetrische Laufzeit enthält alle Asymmetrien zwischen GM (GNSS Referenz) und Testlokation

Notiz: TE Analyse benötigt eine ausreichend genau GNSS Zeitreferenz am Messgerät.

1PPS & ToD Analyse, um "Gesamtperformanz" zu bestimmen.

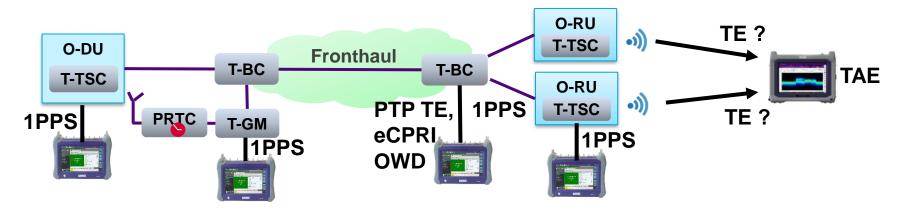

- PTP Slave bietet Ausgang für ToD und 1PPS Signale
 - Diese spiegeln die Gesamtperformanz des Slaves und des Netzwerks
- Der 1PPS Offset ist der wichtigste Wert
 - Er basiert auf allen Effekten, die den PTP Slave Servo beeinflussen Wie asymmetrische Laufzeit, PTP PDV/FPP, BC und/oder TC Fehler
 - Ergebnisse: Offset, TIE, MTIE/DTEV, ToD
- Wichtig: Der Slave sollte auch einen ToD Ausgang haben

 Auch bei einem geringen 1PPS Offset, kann ToD mehrere Sekunden weg sein

ToD \$	Time 💠
Ref GPS Date	01/08/2017
Ref GPS Time	08:46:45
DUT GPS Date	01/08/2017
DUT GPS Time	08:46:27

Offset between signals, Avg (ns) -0,3 Offset between signals, Min (ns) -2,2 Offset between signals, Max (ns) MTIE (Max. Peak-to-Peak TIE) (ns) 4,4 TIE (Time Interval Error) (ns) -2,8 Min. TIE (ns) -3,1 Max. TIE (ns) Offset, Avg Graph \$ 1pps Scale H ◆ Mean ◆

Offset between signals, Cur (ns)



Notiz: TE Analyse benötigt eine ausreichend genau GNSS Zeitreferenz am Messgerät.

-1,9

TE/TAE Überprüfung per PTP oder 1PPS Analyse – Tuning oder Fehlersuche

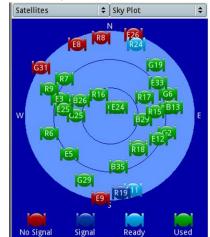
- Je nach verfügbaren Messpunkten kann per 1PPS oder per PTP Analyse nach der Ursache für einen TAE Fehler auf RF Ebene gesucht werden. Eventuell auch per eCPRI OWD
 - 1PPS an einem ToD/1PPS Ausgang eines PTP Netzelementes (RU, DU, BC)
 - PTP per PTP Slave Emulation an einem BC Master Port nahe dem RU Fronthaul Zugang
 - OWD per eCPRI OWD Protokoll an einem Ethernet Port gegen DU
 - Bedingung, DU muss zeitlich sehr gut synchronisiert sein
 - Zusätzliche Kontrolle ob das OWD kleiner 100us ist

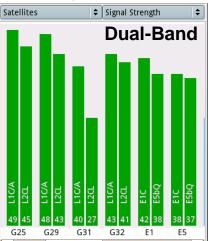
PTP: Precision Timing Protocol

GNSS: Global Network Satellite System

PRTC: Primary Reference Time Clock Notiz: TE Analyse benötigt eine ausreichend genau GNSS Zeitreferenz am Messgerät.

GNSS Empfänger als portable Referenzquelle Was ist zu beachten?

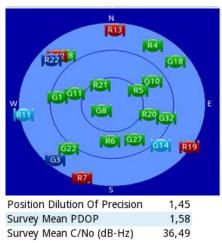

Genau Referenzzeit nur bei genauer Antennenposition

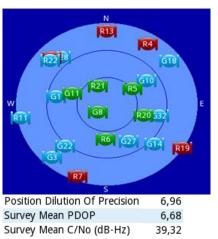

- Je genauer die Antennenposition, um so genauer die Referenzzeit
 - Mehr als 4 Satelliten (besser so viel wie möglich) mit ausreichendem C/No sind notwendig
 - Eine Abweichung um 1 Meter in der Höhe ergibt einen Fehler von bis zu 3ns
 - Positionsbestimmung über Survey Funktion des GNSS Empfängers
 - Hochgenaue Positionsbestimmung kann mehrere Stunden benötigen
 - Bei freiem Himmel etwa 15 Minuten für eine Genauigkeit von <1m
- Es gibt mehrere Störungsfaktoren, die eine Positions- und Zeitbestimmung beeinflussen.
 - Ionosphäre und Sonnenstrahlung
 - Reflektierte und gedämpfte Signale
 - Antenneninstallation (hat keinen Einfluss auf die Position, erzeugt aber eine Laufzeitverzögerung)
- Antennenkabel erzeugen eine Signalverzögerung. (ca. 5ns pro Meter)
- GNSS Antennen enthalten eine aktive Komponente, welche eine Signalverzögerung erzeugt
- Beides muss bekannt sein und im GNSS Empfänger kompensiert werden
- Die Länge des Antennenkabels hat keinen Einfluss auf die Position
 - Die ermittelte Position ist immer die tatsächliche Position der Antenne

Ionosphäre, Sonnenstrahlung -> Single- oder Dual-Band GNSS

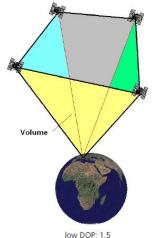
- lonosphäre (Luftschicht von ca. 85km bis 700km)
 - Enthält einen großen Anteil an ionisierten Partikeln
- Sonnenstrahlung besteht unter anderem aus elektromagnetischer Strahlung
 - Die Aktivität schwankt regelmäßig alle 24 Std, Sommer/Winter, 11 Jahreszyklus, spontan
- Beide beeinflussen die Übertragung der elektromagnetischen Satellitensignale
- Single-Band Empfänger können SBAS für Signallaufzeitkorrektur nutzen
- Dual-Band Empfänger nutzen zwei unterschiedliche Frequenzen
 - Die Signallaufzeit hängt von der Signalfrequenz ab. Dies ermöglicht eine Laufzeitkorrektur
- Möglichst viele Satelliten verwenden.
 - GNSS: Galileo, GPS, GLONASS, BeiDou
 - PDOP-Wert möglichst klein

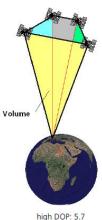
SBAS: Satellite based augmentation system


PDOP: Positional Dilution of Precision


PDOP – Positional Dilution of Precision

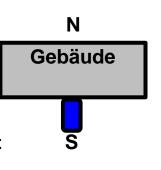
- PDOP beschreibt den Einfluss der Satellitengeometrie auf die Position bei der 3D-Raummessung
- Je größer das Volumen, desto niedriger und besser der PDOP-Wert
- Monitore den PDOP Wert, um die GNSS Einstellungen zu optimieren

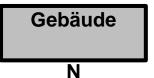

 GPS, Galileo, GLONASS, BeiDou, SBAS, Dual-Band, Höhengrenze, SNR, Standort, etc.



EL = 5 degrees

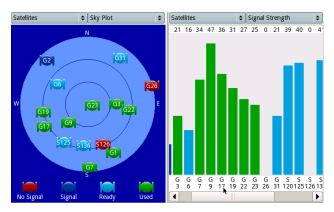
EL = 45 degrees

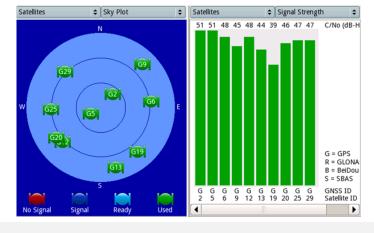



Satelliten Konstellation - Was zeigt sie uns?

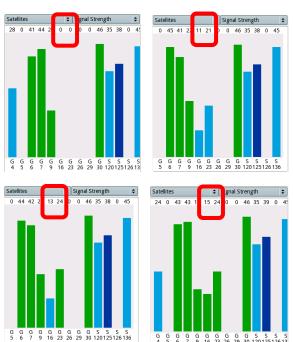
 Antenne ist nahe einem Gebäude, welches den Nord-Himmel versperrt

 Trotzdem werden reflektierte Signale vom Nord Himmel mit geringem Pegel empfangen



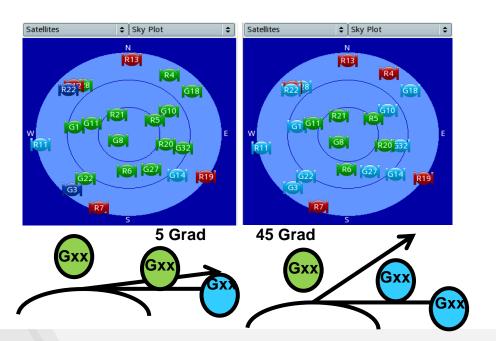

 Antenne in freier Fläche mit Sicht zum ganzen Himmel

S



Minimum C/No Einstellung, um Bad Signals zu blocken

- Satellitensignale G16 und G23 sind nicht stabil
 Sie schwanken zwischen No Signal und Used Signal
- Mit C/No Einstellung 25 dB-Hz werden sie geblockt und nicht für die Antennenlokationsbestimmung verwendet



Horizontwinkel, um schlechte Signale zu blocken

- Mit dem Horizontwinkel nur Satelliten über einem bestimmten Winkel verwenden.
- Eine Möglichkeit, um im Stadtbereich reflektierte Signale zu blocken
 - Der durchschnittliche Signalpegel wird erhöht, aber der PDOP wird schlechter (größer)
 - PDOP ist wichtiger, aber sollte stabil sein. (max +/- 0.5)

5 Grad

Position Dilution Of Precision	1,45
Survey Mean PDOP	1,58
Survey Mean C/No (dB-Hz)	36,49

45 Grad

Position Dilution Of Precision	6,96
Survey Mean PDOP	6,68
Survey Mean C/No (dB-Hz)	39,32

Die Holdover Funktion

- Der Holdover Prozess besteht aus der absoluten Uhrzeit und der Frequenz des Oszillators
- Die Uhrzeit und die Frequenz (Takt für die Uhr) kommen vom GNSS
- In einem Tuning Prozess wird der Oszillator auf die GNSS Frequenz "gedrückt"
 - Jeder Oszillator hat seine eigene spezifische Frequenz. Ohne Tuning driftet die Systemzeit von der GNSS Zeit weg. Bei einem getunten Oszillator bleibt die Systemzeit je nach Situation für eine bestimmte Dauer auf der GNSS Zeit. Zurück auf seiner eigenen Frequenz, driftet die Systemzeit weg von GNSS

Start von Stabilitäts-Kurze Re-Sync-Periode, um die Systemzeit Driftphase(n) wieder auf die Referenzzeit zu stellen. Holdover phase I Offset, Cur Graph **♦** Mean

10:53:57

Eine kurze Verbindung (5 min) des TEM zur GNSS Referenz bringt das 1PPS Timing zurück auf das Referenzsignal. Und der Drift beginnt wieder bei "null". Null, allerdings nur in dem Fall, wenn die Antennenposition genau genug ist.

MTS-5800-100G / TEM

